# Letter to the Editor: <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N assignments of the neural cell adhesion molecule module-1

Peter Holme Jensen<sup>a,c</sup>, Niels Kirk Thomsen<sup>a</sup>, Vladislav Soroka<sup>a,b</sup>, Vladimir Berezin<sup>b</sup>, Elisabeth Bock<sup>b</sup> & Flemming M. Poulsen<sup>a,c,\*</sup>

<sup>a</sup>Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark; <sup>b</sup>Protein Laboratory, Institute of Molecular Pathology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N., Denmark; <sup>c</sup>Present address: Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen, Denmark

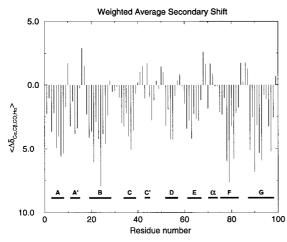
Received 5 August 1998; Accepted 22 September 1998

Key words: <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N assignments, module-1, neural cell adhesion molecule

### **Biological context**

Neural cell adhesion molecule, NCAM, is a cellsurface glycoprotein, which mainly is expressed by neural cells, but it is also found in smaller amounts on the surface of other cells. NCAM is known to play a role in the development of the nervous system and in the processes of learning. The extracellular part of NCAM consists of 7 modules; 5 Ig-like modules and 2 fibronectin type III-like modules. NCAM is expressed in three major isoforms, NCAM-A, NCAM-B and NCAM-C. They differ in their cytoplasmic part, where the two longest forms NCAM-A and NCAM-B both have a transmembrane peptide and an intracellular module. The shortest form, NCAM-C, does not have these features but binds to the cell membrane by a GPI anchor.

Structure determination of the individual modules of NCAM is in progress. It has been shown that the structure of module-1 is an I-set of the immunoglobulin superfamily (Thomsen et al., 1996). The atomic coordinates are available from the Protein Data Bank by accession code 2NCM.


## Methods and results

For production of murine NCAM module-1, a cDNA fragment corresponding to residues 20–116 (SWISS-PROT, accession number P13595) was subcloned into a Xho I/Bam HI site of the pHIL-S1 plasmid. The recombinant plasmid, linearized with Nsi I, was used for

transformation of a Pichia pastoris strain His 4 GS-115 (Invitrogen Co., San Diego, CA). The sequence numbering of NCAM module-1 refers to the expression product, which contains two N-terminal residues from the vector. Three samples of module-1 of NCAM have been studied. They are respectively, unlabelled, <sup>15</sup>N labelled, and <sup>13</sup>C and <sup>15</sup>N double labelled NCAM module-1. They were prepared by growing Pichia pastoris in minimal media with <sup>15</sup>N labelled ammonium sulphate and <sup>13</sup>C labelled methanol/glucose as the sole <sup>15</sup>N and <sup>13</sup>C sources in the appropriate preparations. The expression media were desalted and subsequently NCAM module-1 was purified by gelfiltration in 20 mM NaCl, pH 6.0 and concentrated to a final concentration of approximately 2 mM in the unlabelled sample, and 1 mM in the samples of <sup>15</sup>N and <sup>15</sup>N/<sup>13</sup>C labelled protein.

The following NMR spectra were recorded, with the indicated number of acquired complex points in the indicated dimensions, and used for assignment: TOCSY (2048 (t<sub>2</sub>,<sup>1</sup>H) × 512 (t<sub>1</sub>,<sup>1</sup>H)) in H<sub>2</sub>O and in D<sub>2</sub>O both with  $\tau_m = 70$  ms (Braunsweiler and Ernst, 1983); DQFCOSY (2048 (t<sub>2</sub>,<sup>1</sup>H) × 512 (t<sub>1</sub>,<sup>1</sup>H)) in H<sub>2</sub>O and in D<sub>2</sub>O (Piantini et al., 1982); NOESY (2048 (t<sub>2</sub>,<sup>1</sup>H) × 512 (t<sub>1</sub>,<sup>1</sup>H)) in H<sub>2</sub>O and in D<sub>2</sub>O with  $\tau_m$  in the range 50–200 ms (Kumar et al., 1981). The spectral widths of the 2D homonuclear experiments were 7812.5 × 7812.5 Hz. <sup>15</sup>N HSQC (1024 (t<sub>2</sub>,<sup>1</sup>H) × 512 (t<sub>1</sub>,<sup>15</sup>N)) (Bodenhausen et al., 1980) using spectral widths of 7812.5 × 2000 Hz. <sup>15</sup>N TOCSY-HSQC (1024 (t<sub>3</sub>,<sup>1</sup>H) × 128 (t<sub>2</sub>,<sup>1</sup>H) × 32 (t<sub>1</sub>,<sup>15</sup>N)) with  $\tau_m = 70$  ms, and <sup>15</sup>N NOESY-HSQC (1024 (t<sub>3</sub>,<sup>1</sup>H) ×

<sup>\*</sup>To whom correspondence should be addressed. E-mail: fmp@crc.dk



*Figure 1.* WASS-plot (Weighted Average Secondary Structure) of NCAM module-1 (G. Gippert, personal communication). The diagram shows the average chemical shift deviation from random coil values of C $\alpha$ , C $\beta$ , CO and H $\alpha$  for each residue. When the index number is >1,  $\alpha$ -helical secondary structure is expected, and if the index number is < -1,  $\beta$ -sheet secondary structure is expected. Thick lines show the actual secondary structure in NCAM module-1 (Thomsen et al., 1996).  $\beta$ -strands are labelled A  $\rightarrow$  G, and the helical turn is labelled  $\alpha$ .

 $128 (t_2, {}^1\text{H}) \times 32 (t_1, {}^{15}\text{N}))$  with  $\tau_m = 100$  ms (Zhang et al., 1994), using spectral widths of  $7812.5 \times 7812.5$  $\times$  2500 Hz for both experiments. HNCO (1024 (t<sub>3</sub>, <sup>1</sup>H) × 64 (t<sub>2</sub>,<sup>13</sup>C) × 28 (t<sub>1</sub>,<sup>15</sup>N)) (Kay et al., 1990); HNCA (1024 (t<sub>3</sub>,<sup>1</sup>H) × 48 (t<sub>2</sub>,<sup>13</sup>C) × 24 (t<sub>1</sub>,<sup>15</sup>N)) (Kay et al., 1990); HNCOCA (1024 ( $t_3$ , <sup>1</sup>H) × 48 ( $t_2$ , <sup>13</sup>C) × 24  $(t_1, {}^{15}N))$  (Grzesiek and Bax, 1992), using the same spectral widths of 7812.5  $\times$  6250  $\times$  2500 Hz for all 3 experiments. And last, HCCH-TOCSY (1024  $(t_3, {}^1H) \times 128 (t_2, {}^1H) \times 32 (t_1, {}^{13}C))$  (Bax et al., 1990), using spectral widths of 6097  $\times$  5555  $\times$  3333 Hz. The NMR experiments were performed on a Bruker AMX-600 MHz spectrometer at 298 K. The complete assignment of the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N resonance lines from these spectra was performed using the computer program PRONTO (Kjær et al., 1994). A WASS-plot (Weighted Average Secondary Structure) of NCAM module-1 is shown in Figure 1 (G. Gippert, personal communication). The plot shows the average chemical shift deviation from random coil values of  $C\alpha$ ,  $C\beta$ , CO and H $\alpha$  for each residue. As expected it predicts a  $\beta$ -sheet structure for module-1.

## Extent of assignments and data deposition

Here we report the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N chemical shifts of resonances of NCAM module-1. The assignments

have been deposited in the BioMagResBank database (accession number: 4162).

For 83 of the 99 residues the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N NMR signals were fully assigned. For 16 residues, including the aromatic residues, partial assignment was obtained. All <sup>13</sup>C resonances have been assigned, except for the aromatic residues where only the  $C^{\alpha}$ and  $C^{\beta}$  resonance lines were observed. All the expected <sup>15</sup>NH backbone cross peaks were assigned, and all <sup>15</sup>NH side chain cross peaks of Asn, Gln, and Arg were assigned except  $N^{\delta 2}H$  of Asn<sup>57</sup>. For 38 residues the dihedral angle  $\chi^1$  was determined. This led to stereospecific assignments of 20 pairs of  $H^{\beta}s$  in methylene groups and the  $H^{\gamma}s$  of the methyl groups of seven values. The remaining  $\chi^1$  angles were determined for four threonines and seven isoleucines. The stereospecific assignments were obtained from coupling constant measurements in a NOESY spectrum of the <sup>15</sup>N labeled NCAM module-1 in combination with coupling constant measurements obtained from NOESY and DQFCOSY spectra. <sup>15</sup>N TOCSY-HSQC, <sup>15</sup>N NOESY-HSQC, HNCA and HNCOCA spectra were used for sequential assignment.

#### Acknowledgements

The research project was supported by the Danish Biotechnological Research and Development Programme. This is a contribution from the Danish Instrument Center for NMR spectroscopy of Biological Macromolecules.

#### References

- Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) J. Magn. Reson., 88, 425–431.
- Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett., 69, 185–189.
- Braunsweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521–528.
- Grzesiek, S. and Bax, A. (1992) J. Magn. Reson., 96, 432-440.
- Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.
- Kjær, M., Andersen, M.K. and Poulsen, F.M. (1994) *Methods Enzymol.*, 239, 288–307.
- Kumar, A., Wagner, G., Ernst, R.R. and Wüthrich, K. (1981) J. Am. Chem. Soc., 103, 3654–3658.
- Piantini, U., Sørensen, O.W. and Ernst, R.R. (1982) J. Am. Chem. Soc., 104, 6800–6801.
- Thomsen, N.K., Soroka, V., Jensen, P.H., Berezin, V., Kiselyov, V.V., Bock, E. and Poulsen, F.M. (1996) *Nat. Struct. Biol.*, 3, 581–585.
- Zhang, O., Kay, L.E., Olivier, J.P. and Forman-Kay, J.D. (1994) J. Biomol. NMR, 4, 845–858.